
OCEAN GEHR-compliant Kernel
Application Programmer’s Interface Rev 2.1 Draft A
OCEAN GEHR-compliant Kernel

Application Programmer’s Interface

Author: Thomas Beale

Revision: 2.1 Draft A

Pages: 33
Author: Thomas Beale Page 1 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

Copyright © 1999, 2000
Open EHR Foundation
email: info@gehr.org

OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
Amendment Record

Issue Details Who Date

1.1 Draft A Initial Writing T Beale Oct 1999

1.1 Draft B Standalone document T Beale Nov 1999

2.1 Draft A API for content level added; examples included. T Beale 17 May 2000
Date of Issue:14/Jan/03 Page 2 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel
Application Programmer’s Interface Rev 2.1 Draft A
1 Introduction.. 5
1.1 Status..5
1.2 Overview..5
1.2.1 Types of API ..5

2 Working Example .. 7

3 API Design ...11
3.1 Native API Requirements ..11
3.1.1 Inheritance ...11
3.1.2 Genericity ..11
3.1.3 Assertions ..12
3.1.4 Exceptions..13
3.1.5 Example ...13
3.2 Component API Requirements ..13
3.2.1 Data Types ...14
3.2.2 References..15
3.2.3 Example ...15
3.3 Application Requirements ...17

4 The Ocean GEHR API .. 18
4.1 Native API ...18
4.1.1 Server & Session..18
4.1.2 Database (3 classes, 40 features) ...18
4.1.3 Demographics (5 classes, 50 features)...18
4.1.4 EHRs (2 classes, 20 features) ..18
4.1.5 Transactions (2 classes, ~25 features) ...18
4.1.6 Organisers (2 classes, 20 features)...18
4.1.7 Content (12 classes, ~200 features) ...18
4.2 COM API ...23
4.2.1 COM Server...23
4.2.2 KERNEL_SESSION ...23
4.2.3 DEMOGRAPHIC_MANAGER..23
4.2.4 EHR_FACTORY ...24
4.2.5 TRANSACTION_FACTORY ...24
4.2.6 deferred ARCHETYPED_FACTORY ..24
4.2.7 ORGANISER_FACTORY ..24
4.2.8 ORGANISER ..25
4.2.9 DEFINITION_CONTENT_FACTORY..25
4.2.10 DEFINITION_CONTENT..25
4.2.11 DATA_FACTORY...26
4.2.12 deferred HIERARCHICAL_PROPOSITION26
4.2.13 SIMPLE_PROPOSITION ...26
4.2.14 TREE_PROPOSITION ...26
4.2.15 LIST_PROPOSITION...27
4.2.16 TABLE_PROPOSITION...27
4.2.17 deferred HIERARCHICAL_CURSOR ...27
4.2.18 deferred HIERARCHICAL_LINEAR_CURSOR.........................28
4.2.19 deferred HIERARCHICAL_GROUP_CURSOR..........................28
4.2.20 TREE_CURSOR ...29
Author: Thomas Beale Page 3 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
4.2.21 VALUE_CURSOR.. 29
4.2.22 GROUP_CURSOR ... 29
4.2.23 ROW_CURSOR ... 30
Date of Issue:14/Jan/03 Page 4 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel Introduction
Application Programmer’s Interface Rev 2.1 Draft A
1 Introduction

1.1 Status
This document constitutes the beginnings of an API description. At this stage, it should be read by
application developers, and their feedback used to determine the flavour of the interface (e.g. use of
logical handles etc). When the rules of the API have become firm, the remainder will be completed
fairly quickly.

1.2 Overview
If we consider that the GEHR kernel as a constructor and processor of the informational structures of
EHRs, the kernel API is the means of controlling it from the outside. In object-oreinted terms, the API
is nothing more than the interface to an outer layer of classes whose job is to provide an interface to
the underlying model, allowing procedural usage. These classes are sometimes called policy classes,
because they represent a certain way of using the underlying model. In more traditional programming
terms, the exported interface of these classes consititutes the application programmer’s interface, and
this is a perfectly reasonable view to take, especially when using more procedural languages.

There are a number of issues with the design of the exported interface of the kernel. The primary issue
is that if the kernel is to act as a component, and perform its functions consistently, regardless of
details of the caller or the mechanism of runtime communication with applications or other compo-
nents, then there are constraints on the semantics of the function in the API. Additionally, the design
of the functions has as much to do with the requirements of calling applications as the underlying ker-
nel.

1.2.1 Types of API
Starting from the GOM, there are a number of layers of classes which are potentially needed for dif-
ferent purposes. The first layer of classes can be thought of as a “native” object-oriented interface:
they represent the interface that would be used to the kernel for an application being written in the
same language, or a very similar one. The calls and structure of this API can retain most of the fea-
tures of Eiffel, thus its main purpose is to provide calls reflecting logical patterns of usage of GOM
classes. A native interface allows us to write applications in Eiffel.

From the native API, we can fairly easily provide a standardised native interface, using CORBA. A
mapping already exists from Eiffel to CORBA, allowing the native interface to be made available to
languages which can use the object-oriented style interface provided by a CORBA ORB. With such
an interface, can write applications in C++ and Java. This logic may also apply to Enterprise Java
Beans; more investigation is required on this.

Moving further away from the strong object-oriented paradigm of Eiffel, Java and friends, we come
to languages such as Delphi and VB, which have a modicum of object-orientation. To write an appli-
cation in these languages, we need to provide yet another interface layer which makes the kernel
available across the COM interface they typically use, with a concomitant simiplification of types and
other semantics. We will call the API of this layer the component API. Applications written to this
API are likely to be end-user GUI applications.
Author: Thomas Beale Page 5 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

Introduction OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
The following table summarises the characteristics of the three levels of API described above in terms
of the object-oriented concepts supported.

Where the concept is not supported directly does not mean it cannot be implemented, it simply means
that some mapping or explicit work is required to make it available.

OO Concept Native API
(Eiffel)

Standardised
Native API (IDL)

Component API
(COM)

simple data types Y Y Y

arrays of simple types Y Y Y

constructed types Y Y Y

generic classes Y containers only -

inheritance Y Y -

assertions Y - -

exceptions Y Y Y
Date of Issue:14/Jan/03 Page 6 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel Working Example
Application Programmer’s Interface Rev 2.1 Draft A
2 Working Example

In order to give some substance to the following discussion, we will posit a hypothetical example of
API usage. The following is not in any way definitive of the kernel API - it will just serve the needs of
elucidating the issues of API construction. The example performs the simple logical task of initialis-
ing a session with a GEHR kernel.

At the native API, the first thing we want to do is to make a call to a function like:

KERNEL_SESSION.init_kernel_session(a_user:STAFF_MEMBER; an_hcf:HCF)
require

User_exists: a_user /= Void
Hcf_exists: an_hcf /= Void

This is a notional “logging in” function in a KERNEL_SESSION object, which we assume is in the ker-
nel API. To get this far, we need to have created STAFF_MEMBER and HCF objects as arguments. One
way to do this might have been to pass both in the form of XML or other parseable strings; this would
require an alternative function of the form:

KERNEL_SESSION

feature --
init_kernel_session_from_doc(a_user:XML_DOC; an_hcf:XML_DOC)

require
User_exists: a_user /= Void and then not a_user.empty
Hcf_exists: an_hcf /= Void and then not an_hcf.empty

Here we assume that XML_DOC is a descendant of the Eiffel STRING class. This function is entirely
legitimate, and is likely to be used in the kernel. However, it may not be possible or suitable in all cir-
cumstances. What if the application is designed to build a STAFF_MEMBER and an HCF piece-by-
piece, and pass them as arguments to the kernel session function? In the underlying GOM, the class
STAFF_MEMBER has two make functions with the signatures:

make(a_name:PERSON_NAME_IMPL; a_position:PLAIN_TEXT; dob:DATE_IMPL; pob:STRING)

require
Person_name_exists: a_name /= Void
Position_exists: a_position /= Void
Dob_exists: dob /= Void
Pob_exists: pob /= Void and then not pob.empty

make_all(a_name:PERSON_NAME_IMPL; a_position:PLAIN_TEXT;

an_aliases:HASH_TABLE[PARTY_NAME_IMPL, TERM_TEXT];

dob:DATE_IMPL; pob:STRING; a_contacts:ARRAYED_LIST [CONTACT_DESCRIPTOR])

require
Person_name_exists: a_name /= Void
Position_exists: a_position /= Void
Aliases_exists: an_aliases /= Void
Dob_exists: dob /= Void
Pob_exists: pob /= Void and then not pob.empty
Contacts_exists: a_contacts /= Void

The first of these is a minimal constructor, while the second is designed for use when a complete staff
member object is imported from elsewhere. Similarly, the HCF class has a make function:

make(a_name:PARTY_NAME_IMPL; a_business_address:DEFINITION_CONTENT;
a_reg:REGISTRATION)

require
Author: Thomas Beale Page 7 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

Working Example OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
Name_exists: a_name /= Void
Address_exists: a_business_address /= Void
Registration_exists: a_reg /= Void

In the native API, we might provide features like the following (classes in this API are prefixed for
the moment with NAPI):

class NAPI_DEMOGRAPHIC_FACTORY

feature
create_hcf(hcf_name:STRING; business_address:DEFINITION_CONTENT;

reg_country, reg_body, reg_id:STRING):HCF

require

Hcf_name_exists: hcf_name /= Void and then not hcf_name.empty

Address_exists: business_address /= Void

Reg_country_exists: reg_country /= Void and then not reg_country.empty

Reg_body_exists: reg_body /= Void and then not reg_body.empty

Reg_id_exists: reg_id /= Void and then not reg_id.empty

create_staff_member(

a_name:PERSON_NAME_IMPL; a_position:PLAIN_TEXT;

dob:DATE_IMPL; pob:STRING)

require

Hcf_name_exists: hcf_name /= Void and then not hcf_name.empty

Address_exists: business_address /= Void

create_address(tags:ARRAY[STRING];

values:ARRAY[STRING]):DEFINITION_CONTENT is

require

Tags_exists: tags /= Void and then tags.count > 0

Values_exists: values /= Void and then values.count > 0

Data_validity: tags.count = values.count

These functions are not suitable to be directly exposed in the component API, due to the constructed
Eiffel types, so some logical equivalent is needed. For the moment, we will assume component API
functions of the form:

class CAPI_DEMOGRAPHIC_FACTORY

feature --
create_staff_member(... args)

create_hcf(... args)

The arguments to these functions (yet to be defined) carry the same logical information as those of the
underlying make functions. When either of these functions is called, they will call the appropriate
underlying make function, above. To do this, they will create objects of type PERSON_NAME_IMPL,
PLAIN_TEXT, and DEFINITION_CONTENT, based on the arguments. How will this be done? Let us
take the example of the business address argument. The kernel uses the DEFINITION_CONTENT
generic type for such things because it does not want to use a concrete class (such as
“BUSINESS_ADDRESS”) for demographic entities. But how is a DEFINITION_CONTENT created?
Let us assume that for the example, we want to create a DEFINITION_CONTENT whose logical form
is “list”, and that the contents will be tagged strings. Thus, for the logical address:
Date of Issue:14/Jan/03 Page 8 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel Working Example
Application Programmer’s Interface Rev 2.1 Draft A
73 High St,
Kingston,
Norfolk
ABC123
England

we intend to create a structure of the form:

PC:content-root
|
+---->HP/HG: “business address”

|
+---->HV: “street number” = 73

|
+---->HV: “street name” = “High St”

|
+---->HV: “locality” = “Kingston”

|
+---->HV: “county” = “Norfolk”

|
+---->HV: “postcode” = “ABC123”

|
+---->HV: “country” = “England”

(where PC = DEFINITION_CONTENT; HP = HIERARCHICAL_PROPOSITION; HG =
HIERARCHICAL_GROUP, HV = HIERARCHICAL_VALUE)

To start with there is a make function in the DEFINITION_CONTENT class in the GOM:

make(a_form:INTEGER; a_model:TERM_TEXT)

This will create an empty content object. Two further problems arise: how to create the TERM_TEXT
argument, and how to populate the content object with data representing the address? We will deal
with the second of these first. Based on the GOM, we want to be able to make calls to the API which
eventually translate to calls to certain calls to the relevant kernel objects perhaps similar to the follow-
ing:

local
i:INTEGER
tags, values:ARRAY[STRING]
a_term:TERM_TEXT
a_tag, a_val:PLAIN_TEXT
a_content_root:DEFINITION_CONTENT
a_content:LIST_PROPOSITION[NO_CONTEXT]

do
tags := <<"street number", "street name", "locality", "county",

"postcode", "country">>

values := <<"73", "High St", "Kingston", "Norfolk",
"ABC 123", "England">>

create a_term.make(“business address”, Gehr_termset)
create a_content_root.make(Form_list, a_term)
a_content := my_pure_content.content
from

i := 1
until

i > tags.count
loop

create a_tag.make(tags.item(i))
create a_val.make(values.item(i))
Author: Thomas Beale Page 9 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

Working Example OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
a_content.put_value(a_tag,a_value)
i := i + 1

end
end

The above is somewhat contrived, but illustrative of certain problems of the component API: how are
progressively larger objects to be created, remembered, passed to higher level creation functions and
so on, when the caller is on the other side of a component interface, and quite likely written in a com-
pletely different language from the kernel? Not to mention that the application developer does not
want to write torturous, bulky code to perform even the simplest of tasks.
Date of Issue:14/Jan/03 Page 10 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel API Design
Application Programmer’s Interface Rev 2.1 Draft A
3 API Design

It is a primary aim for the GEHR kernel to be able to act as a component which is usable by applica-
tions written in other languages, and regardless of the method of building it into the runtime system.
Depending on the semantics of the language, and its preferred method of binary integration, either the
Native API or the Component API will be used. The former is developed from the GOM, while the
latter is a mapping of the Native API, suitable for use by COM clients. The following sections discuss
the requirements and design constraints of each type of API, in order to develop a set of rules for writ-
ing APIs.

3.1 Native API Requirements
The native API is designed for use by applications written in object-oriented languages. The mode of
usage is slightly different depending on the language:

• Eiffel applications can use it directly

• C and C++ applications must use the CECIL interface, i.e. the C mappings of the Eiffel
API

• Java and C++ applications can use the CORBA mapping of the native API

In the interests of enabling the use of as many languages as possible, the API takes into account a
number of constraints, including:

• Inheritance may be limited to single inheritance

• No genericity (i.e. no template classes)

• Different idioms for programming

• Exception handling is typically different

• Inability to include pre- post-conditions in the natural form available in Eiffel.
To Be Determined:

3.1.1 Inheritance
The simplest approach with respect to inheritance is simply not to use it in the API. Whilst it serves an
important purpose in the GOM, there is no strong need for it in the API, since only concrete classes
need to be exposed in the API.

3.1.2 Genericity
Genericity in Eiffel is a means of generating types from classes which have arguments. For example,
the class LINKED_LIST can take as its generic parameter another type. As a result, types such as
LINKED_LIST[INTEGER], LINKED_LIST[STRING], LINKED_LIST[PERSON], and
LINKED_LIST[ARRAYED_LIST[ITEM]] can be generated. Of mainstream object-oriented lan-
guages, only C++ has the same facility. However, for languages using the CORBA interface, linear
containers such as LINKED_LIST can be used in a limited sense, since they have equivalents in IDL.

IDL has the pseudo-types List<>, Bag<>, Array<> and Set<>, each with different semantics. The
simplest way to use these is to map all Eiffel LIST types to List<>, ARRAY[G] to Array<> and so
on.

The remaining problem for generic types in the GOM is for non-linear containers, of which, as it hap-
pens, there are very few. However these can be mapped to their equivalent types. For example the Eif-
fel generic type EXTERNAL_REF[HCP] can be mapped to the type EXTERNAL_REF_HCP.
Author: Thomas Beale Page 11 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

API Design OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
3.1.3 Assertions
One of the most powerful aspects of Eiffel is its ability to express contracts, using assertions. The
GOM exploits these extensively, making it far more reliable and comprehensible than if it had been
expressed in a weaker language.

In a kernel which is implemented in Eiffel, the assertions are of course available at runtime. In a pro-
duction kernel, it is most likely that pre-conditions would be left activated, meaning that violations of
preconditions cause an assertion violation exception, rather than some obscure result or exception
later in processing. All assertions - pre-conditions, post-conditions and invariants - will always be
available in documentation to API developers as well, enabling (if not guaranteeing) the same level of
quality.

The question remains of how to represent assertions (if at all) in the API. The main assertion of
importance to the client is the precondition: it both expresses the condition the client must satisfy, and
provides functions which the client can call at runtime to determine whether the main call can be
made. This enables the client to avoid causing an exception in the system due to a condition which
was in fact knowable in advance (i.e. by the client testing it first), and hence to write more robust soft-
ware.

It makes sense therefore to supply all preconditions in the API as standalone functions, to which the
client can pass arguments, in order to determine their validity for passing to the main function. The
client is not obliged to use these functions; their use is recommended in parts of the client code where
the quality of arguments may not be guaranteed (e.g. unknown user input, data from a database etc).
In formal terms, this is done as follows:

For an Eiffel feature of the form:

class CLASS_1

feat_1(....args...):RESULT
require

condition_1: some boolean condition
condition_2: some boolean condition

do
-- work...

end

The API will contain functions of the form:

class_1_feat_1(.... args ...):RESULT
class_1_feat_1_condition_1(..... args):BOOLEAN
class_1_feat_1_condition_2(..... args):BOOLEAN

As a simplification, numerous argument-testing conditions could be rolled into one, as follows.

class_1_feat_1(.... args ...):RESULT
class_1_feat_1_args_valid(..... args):BOOLEAN

The exact mapping of Eiffel precondition functions to the API is a matter of ensuring clarity. How-
ever, condition tests for which the client might reasonably want to do something separate in the case
of failure should remain separate functions in the API.

For certain arguments there may be special preconditions, for example, for XML arguments, there
may be a precondition which tests validity of the passed string as XML.
Date of Issue:14/Jan/03 Page 12 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel API Design
Application Programmer’s Interface Rev 2.1 Draft A
3.1.4 Exceptions
One last issue relating to assertions needs to be addressed: what happens if there is an assertion viola-
tion in the kernel? This brings us to the subject of exception handling.

The Eiffel runtime system will generate an exception, in a number of circumstances:

• Assertion violation

• Divide-by-zero

• Operating system errors such as segmentation fault, illegal address, etc

• Programmed software exception

By default, an Eiffel system will die if an exception is not handled. There are two possibilities to
avoid such undesirable behaviour:

• Handle the exception in the kernel, using the Eiffel rescue/retry mechanism. A rescue
clause is written for a routine which assesses the exception and may try to fix the problem
and then use the retry instruction in order to re-enter the main routine (at the top).

• In the case of an Eiffel component integrated into an application, if there is no rescue
clause, the main runtime exception handler is the application. It is the component’s job to
pass back sufficient exception information to enable the client to deal with it sensibly.

To Be Determined: what is the actual behaviour of exceptions in an
eiffel system where the eiffel part is a component? If the excep-
tion is passed to the client, does the eiffel runtime still
remember that there is an outstanding exception?

There are a number of questions to be answered here:

• Which conditions should be handled internally in the kernel?

• Even for an internally handled exception, what happens if it continues to fail, i.e. the res-
cue/retry fails to establish the conditions for correct execution?

• What should the client do with exceptions which are passed to it?

Handling the exception may well involve calling clean-up functions in the kernel, which would need
to be supplied in the API. There may be a need for high-level “reset” functions, which can put the ker-
nel into a guaranteed correct, known state.

At a minimum, the default_rescue clause of a class such as KERNEL_SESSION should post the
name and type of any exception in a form which can be read by the calling application. Various infor-
mation about exceptions in Eiffel can be obtained from the EXCEPTIONS class.

To Be Determined: more research required.

3.1.5 Example
To Be Determined:

3.2 Component API Requirements
Usage of the kernel as a binary component, e.g. via Microsoft’s Component Object Model (COM)
adds further constraints, including:

• Languages may not be object-oriented at all, or may have very different concepts of class,
method, and attribute.
Author: Thomas Beale Page 13 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

API Design OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
• In general, pointers or references to objects created by the kernel will have no meaning to
the client, since return values are passed outside the kernel execution context (i.e. proc-
ess).

• Certain data types cannot be handled by COM
To Be Determined: what are these

In fact, these constraints are not necessarily disadvantages, since the concerns of user application
development are different from those of a high-reliability underlying business component such as the
kernel. Thus, while the benefits of a powerful language like Eiffel are indispensable for a reliable ker-
nel, they are not nearly so important in a GUI application which is likely to be concerned with intelli-
gent window manipulation, XML processing and internet connections.

Thus, the limitations of data types and structures imposed upon the API are useful in the sense that
they draw a clear boundary between a very object-oriented type of software which handles complex
information structures, and typically event-driven style of software, handling documents and user I/O.
However, they do require that the API be devised in a certain way, so as to be valid.

3.2.1 Data Types
In order to guarantee that applications written in any language can use the kernel, only a minimal set
of data types will be passed to and received from the kernel. These include the basic programming
types recognised in almost all languages, as well as arrays of these types. These are shown below in
Eiffel, C and Java syntax.

Important things to note:

• There is no pointer or reference type

• The STRING type can be used to pass XML or other document content.

Eiffel C

INTEGER long, int

BOOLEAN bool

CHARACTER char

char

STRING char *

REAL float

DOUBLE double

ARRAY[INTEGER] int *, int []

ARRAY[BOOLEAN] bool *, bool []

ARRAY[CHARACTER] char *, char []

ARRAY[STRING] char **, (char *) []

ARRAY[REAL] float *, float []

ARRAY[DOUBLE] double *, double []
Date of Issue:14/Jan/03 Page 14 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel API Design
Application Programmer’s Interface Rev 2.1 Draft A
3.2.2 References
Due to the fact that pointers or other references will not generally be valid across a component invo-
cation interface, a different approach is needed when constructing EHR structures. Normally, each
part of a transaction would be constructed by calling functions whose arguments were objects con-
structed by earlier calls, each of which in turn would have been created by calls taking as arguments
references to still smaller objects and so on. Without pointers or references, this is no longer possible,
and a logical equivalent must be found.

A fairly common approach is to use some kind of “handle” as a way of the client referencing each
newly created item. Following this method, actual references or pointers are remembered in the
server (note that we call the kernel a “server” even if it is built into the calling application), and logi-
cal handles generated for them are returned to the client. Logically, all that is happening is that the
server is doing the job of remembering local variables on behalf of the client.

There are a couple of questions which need to be addressed regarding the use of handles:

• What is their type and syntax? For example, are they simply integers, or could a mean-
ingful string be generated instead (this might be useful for debugging of the client appli-
cation)? Should handles be generated for all objects created in the kernel - even the
smallest, such as date-times - or is there an alternative for these?

• In the server (the kernel), each handle is remembered along with the object it stands for.
How long should the handle be kept in the server, and what prevents a build-up of han-
dle/object pairs, bloating the memory footprint of the application?

The method proposed for the kernel is as follows:

1. To create objects at the data level, such as terms, text, quantities and so on, handles will
not be used; instead, the caller will simply pass all the arguments required, which are gen-
erally not numerous. Some simplifications can be made, such as for date-times: a date-
time can be specified by the client by passing a single parseable string of standard format
rather than the six parameters d, mo, y, h, mi, s.

2. Handles will be used for all other objects, including transactions, content trees, demo-
graphic entities and so on. Each handle will be a string of the form type_name-
unique_number. Thus, the handle for a STAFF_MEMBER object created in the kernel
could be “STAFF_MEMBER-17”.

3. To enable the client to control the lifetime of handles, a “construction context” object will
be used. The two contexts in which clients want to construct EHR objects are “session”
and “transaction”. Thus session context (one only) and transaction context (multiple)
objects can be created in the kernel, on behalf of the client. These will retain the set of
handles and object references for a session, and for a transaction respectively; when the
session or transaction is finished, the handle set is thrown away, just as if they were local
variables in a client function.

3.2.3 Example
Let us now return to our example above, and see how these rules would apply. Firstly we want to
establish a construction context for the session. For this we need a context management functions.

class KERNEL_SESSION

feature -- Context management

start_context
Author: Thomas Beale Page 15 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

API Design OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
end_context
end

Now we want to create the STAFF_MEMBER and HCF objects using API functions of the form:

class CAPI_DEMOGRAPHIC_FACTORY

feature -- Context management

start_context

end_context

feature -- Factory

create_staff_member(a_name:STRING; a_position:STRING;
dob:STRING; pob:STRING):HANDLE

create_staff_member_args_valid(a_name:STRING; a_position:STRING;
dob:STRING; pob:STRING):BOOLEAN

create_hcf(a_name:STRING; a_business_address:HANDLE;
a_reg:STRING):HANDLE

create_hcf_args_valid(a_name:STRING; a_business_address:HANDLE;
a_reg:STRING):BOOLEAN

create_address(tags:ARRAY[STRING],
values:ARRAY[STRING]):HANDLE

create_address_args_valid(tags:ARRAY[STRING],
values:ARRAY[STRING]):BOOLEAN

end

Here, the values passed to create_staff_member are parseable strings, in accordance with rule 1
above. The return type is HANDLE, which is a descendant of STRING. In create_hcf, the business
address (logically a DEFINITION_CONTENT) is passed as a HANDLE. This has to have been created by a
call to create_address. It is up to the caller to manage the handles. The beginnings of a certain
style of API programming can now be seen. Let us complete the original example as it might be pro-
grammed in the caller’s application (a pseudo-C syntax is used; the preconditions are not used for
purposes of clarity):

char *H_sm, *H_hcf, *H_addr;

-- some early initialisation stuff
kernel_api.initialise(...args....);

kernel_session.start_context;

H_sm = demographic_factory.create_staff_member(“JONES, Dr Robert”, “Head of
Department”, “13/05/1954”, “Melbourne, Australia”);

H_addr = demographic_factory.create_address(
<<"street number", "street name", "locality", "county", "postcode", "country">>
<<"73", "High St", "Kingston", "Norfolk","ABC 123", "England">>);

H_hcf = demographic_factory.create_hcf(“Nambour Base Hospital”, H_addr,
“Australia - DOH xxx”)
Date of Issue:14/Jan/03 Page 16 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel API Design
Application Programmer’s Interface Rev 2.1 Draft A
kernel_session.init_kernel_session(H_sm, H_hcf)

In this example, the handles H_sm and H_hcf will remain valid until a call such as the following is
made:

kernel_session.end_context;

The above style of interface, while quite different from the underlying GOM functions, respects the
GOM, while allowing the kernel to be used across a binary interface such as COM, from a language
such as Visual Basic.

Let us now consider an example in which a record is retrieved, a new transaction is added, and the
record committed, to see how the above rules shape a possible component API.

To Be Determined:

3.3 Application Requirements
It is the requirements of applications which decide the “shape” of the API, within the constraints dis-
cussed above. There are a number of general requirements, including:

Efficiency: minimum number of calls to achieve common tasks.

Clarity: the calls required to achieve a task should appear sensible to the code reader.

Type compatibility: types of objects required by the kernel must be compatible or dependably
convertable to those of the application.

Underlying these, there is the assumption that an application has available to it API calls which can
perform each step of a process, which is typically procedural, in the case of GUI applications. That is
to say, the API needs to provide calls which in some way satisfy the temporal calling requirements of
the application. A common API may not completely satisfy the exact needs of every single applica-
tion, but it should be able to go a long way to satisfying most. For very different applications, there is
nothing to stop additionals API being written, while respecting the basic rules stated above.

To Be Determined: more application requirements here.
Author: Thomas Beale Page 17 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

The Ocean GEHR API OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
4 The Ocean GEHR API

In this section, a complete API is described. It is identified as the “Ocean” API, since it was originally
proposed by Ocean Informatics, Australia.

To Be Determined:

4.1 Native API
The following sections describe the native API as would be available to an application developer
using Eiffel. It is the basis of the API in all its other forms, eg COM etc.

The statistics on the following class groups are approximate; they can be reduced by using a more
parameterised style of interface, i.e. feewer functions with extra parameters which are dispatched to
the “real” functions at the XXX_IMP class level.

4.1.1 Server & Session

4.1.2 Database (3 classes, 40 features)

4.1.3 Demographics (5 classes, 50 features)

4.1.4 EHRs (2 classes, 20 features)

4.1.5 Transactions (2 classes, ~25 features)

4.1.6 Organisers (2 classes, 20 features)

4.1.7 Content (12 classes, ~200 features)

Content Factories (4 classes, ~36 features)
DEFINITION_CONTENT_FACTORY (6 features)

PHENOMENON_CONTENT_FACTORY (DEFINITION_CONTENT_FACTORY + 7 additional)

SUBJECTIVE_CONTENT_FACTORY (DEFINITION_CONTENT_FACTORY + 7 additional)

INSTRUCTION_CONTENT_FACTORY (DEFINITION_CONTENT_FACTORY + 15? additional)

Content (4 classes, ~40 features)
DEFINITION_CONTENT (4 features)

PHENOMENON_CONTENT (DEFINITION_CONTENT + 8 additional features)

SUBJECTIVE_CONTENT (DEFINITION_CONTENT + 8 additional features)

INSTRUCTION_CONTENT (DEFINITION_CONTENT + 20 additional features)

Propositions (4 classes, ~120 features)
HIERARCHICAL_PROPOSITION (64 features)

SIMPLE_PROPOSITION (HIERARCHICAL_PROPOSITION + 4 additional)

LIST_PROPOSITION (HIERARCHICAL_PROPOSITION + 7 additional)

TABLE_PROPOSITION (HIERARCHICAL_PROPOSITION + 40 additional features)
Date of Issue:14/Jan/03 Page 18 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel The Ocean GEHR API
Application Programmer’s Interface Rev 2.1 Draft A
MATRIX_PROPOSITION

TIME_SERIES_PROPOSITION

REGULAR_TIME_SERIES_PROPOSITION

Examples
The following examples show a fairly accurate use of the content level of the kernel to create new
EHR content, using archetypes.

Example: Creating a Weight. This example shows the basic mentality of the interface: to create con-
tent, a factory is first instantiated; it is asked to create the actual content (cf.create_content call
below). Behind the scenes, this call causes an archetype for the concept “weight” to be retrieved, and
for it to build its default content, which in this case is a single value (SIMPLE_PROPOSITION), and a
protocol (LIST_PROPOSITION). The succeeding calls simply visit the nodes that have been created,
call a pre-condition function (this is a basic feature of programming by contract, which is directly
supported in Eiffel), and if it succeeds, call the data-setting function.

This approach is common throughout the GEHR kernel: default content is created, and modification
the proceeds by visiting what has been created. The default content can also be used to immediately
present something in the graphical interface.

execute is

local

sp: SIMPLE_PROPOSITION;

vc: VALUE_CURSOR;

cf: OBSERVATION_CONTENT_FACTORY;

pt: PLAIN_TEXT;

q: QUANTITY

do

create cf;

cf.create_current_context;

cf.create_item (df.create_plain_text ("weight"));

vc ?= cf.item_protocol_cursor;

vc.go_to_name ("instrument");

pt := df.create_plain_text ("Seca scales");

if vc.data_value_valid (pt) then

vc.replace_data_value (pt)

else

log_event (generator, "execute", "vc.replace_data_value " + pt.value + " failed", error)

end;

vc.go_to_name ("precision");

q := df.create_dimensioned_quantity (0.5, "mass", "kg");

if vc.data_value_valid (q) then

vc.replace_data_value (q)

else

log_event (generator, "execute", "vc.replace_data_value " + q.out + " failed", error)

end;

sp ?= cf.item_proposition;

q := df.create_dimensioned_quantity (85, "mass", "kg");
Author: Thomas Beale Page 19 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

The Ocean GEHR API OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
if sp.data_value_valid (q) then

sp.replace_data_value (q)

else

log_event (generator, "execute", "sp.replace_data_value " + q.out + " failed", error)

end;

io.put_string ("%N------------ Populated value -------------%N");

io.put_string (cf.item.out)

end;

Example: Creating a Blood Pressure. This example is of the same approach as the last, except using a
blood pressure archetype.

execute is

local

cf: OBSERVATION_CONTENT_FACTORY;

vc: VALUE_CURSOR;

tt: TERM_TEXT;

q: QUANTITY

do

create cf;

cf.create_current_context;

cf.create_item (df.create_plain_text ("blood pressure"));

vc ?= cf.item_protocol_cursor;

vc.go_to_name ("instrument");

tt := df.create_term_text (<<gehr_clinical_ts, "0015", expansion_for_code ("0015"), "0">>);

if vc.data_value_valid (tt) then

vc.replace_data_value (tt)

else

log_event (generator, "execute", "bp_protocol.replace_data_value " + tt.value + " failed", error)

end;

vc.go_to_name ("cuff size");

tt := df.create_term_text (<<gehr_clinical_ts, "0019", expansion_for_code ("0019"), "0">>);

if vc.data_value_valid (tt) then

vc.replace_data_value (tt)

else

log_event (generator, "execute", "bp_protocol.replace_data_value " + tt.value + " failed", error)

end;

vc.go_to_name ("position");

tt := df.create_term_text (<<gehr_clinical_ts, "0018", expansion_for_code ("0018"), "0">>);

if vc.data_value_valid (tt) then

vc.replace_data_value (tt)

else

log_event (generator, "execute", "bp_protocol.replace_data_value " + tt.value + " failed", error)

end;

vc ?= cf.item_cursor;

vc.go_to_name ("systolic");

q := df.create_dimensioned_quantity (110, "pressure", "mm[Hg]");
Date of Issue:14/Jan/03 Page 20 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel The Ocean GEHR API
Application Programmer’s Interface Rev 2.1 Draft A
if vc.data_value_valid (q) then

vc.replace_data_value (q)

else

log_event (generator, "execute", "bp.replace_data_value " + q.out + " failed", error)

end;

vc.go_to_name ("diastolic");

q := df.create_dimensioned_quantity (80, "pressure", "mm[Hg]");

if vc.data_value_valid (q) then

vc.replace_data_value (q)

else

log_event (generator, "execute", "bp.replace_data_value " + q.out + " failed", error)

end;

io.put_string ("%N------------ Populated value -------------%N");

io.put_string (cf.item.out)

end

Example: Creating an Audiogram. In this example, no pre-condition calls are used; if it is known a
priori that the intended data-setting calls will work, there is no great risk.

execute is

local

tc: TREE_CURSOR;

vc: VALUE_CURSOR;

cf: OBSERVATION_CONTENT_FACTORY;

pt: PLAIN_TEXT;

qt: QUANTITY

do

create cf;

cf.create_current_context;

cf.create_item (df.create_plain_text ("audiogram"));

vc ?= cf.item_protocol_cursor;

vc.go_to_name ("equipment");

pt := df.create_plain_text ("Welsh-Allen model A1");

if vc.data_value_valid (pt) then

vc.replace_data_value (pt)

else

log_event (generator, "execute", "audiogram_protocol.replace_data_value " + pt.value + " failed: ",

error)

end;

vc.go_to_name ("soundproof");

pt := df.create_plain_text ("Std AS9999");

if vc.data_value_valid (pt) then

vc.replace_data_value (pt)

else

log_event (generator, "execute", "audiogram_protocol.replace_data_value " + pt.value + " failed", error)

end;

vc.go_to_name ("duration");
Author: Thomas Beale Page 21 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

The Ocean GEHR API OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
qt := df.create_dimensioned_quantity (180, "time", "ms");

if vc.data_value_valid (qt) then

vc.replace_data_value (qt)

else

log_event (generator, "execute", "audiogram_protocol.replace_data_value " + qt.value.out + " failed",

error)

end;

vc.go_to_name ("amplitude");

vc.replace_data_value (df.create_dimensioned_quantity (21, "voltage", "uV"));

tc ?= cf.item_cursor;

tc.set_to_path ("|%"audiogram%"|%"left ear%"");

vc := tc.value_cursor;

vc.go_to_name ("1000 Hz threshold");

qt := df.create_dimensioned_quantity (0, "pressure", "dB");

if vc.data_value_valid (qt) then

vc.replace_data_value (qt)

else

log_event (generator, "execute", "audiogram.replace_data_value " + qt.value.out + " failed", error)

end;

vc.go_to_name ("2000 Hz threshold");

qt := df.create_dimensioned_quantity (5, "pressure", "dB");

if vc.data_value_valid (qt) then

vc.replace_data_value (qt)

else

log_event (generator, "execute", "audiogram.replace_data_value " + qt.value.out + " failed", error)

end;

vc.go_to_name ("4000 Hz threshold");

qt := df.create_dimensioned_quantity (20, "pressure", "dB");

if vc.data_value_valid (qt) then

vc.replace_data_value (qt)

else

log_event (generator, "execute", "audiogram.replace_data_value " + qt.value.out + " failed", error)

end;

tc.set_to_path ("|%"audiogram%"|%"right ear%"");

vc := tc.value_cursor;

vc.go_to_name ("1000 Hz threshold");

qt := df.create_dimensioned_quantity (0, "pressure", "dB");

if vc.data_value_valid (qt) then

vc.replace_data_value (qt)

else

log_event (generator, "execute", "audiogram.replace_data_value " + qt.value.out + " failed", error)

end;

vc.go_to_name ("2000 Hz threshold");

qt := df.create_dimensioned_quantity (10, "pressure", "dB");

if vc.data_value_valid (qt) then

vc.replace_data_value (qt)
Date of Issue:14/Jan/03 Page 22 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel The Ocean GEHR API
Application Programmer’s Interface Rev 2.1 Draft A
else

log_event (generator, "execute", "audiogram.replace_data_value " + qt.value.out + " failed", error)

end;

vc.go_to_name ("4000 Hz threshold");

qt := df.create_dimensioned_quantity (30, "pressure", "dB");

if vc.data_value_valid (qt) then

vc.replace_data_value (qt)

else

log_event (generator, "execute", "audiogram.replace_data_value " + qt.value.out + " failed", error)

end;

io.put_string ("%N------------ Populated value -------------%N");

io.put_string (cf.item.out)

end;

4.2 COM API
The following selection of classes is intended to give an idea of the size of the COM interface (see the
kernel classes for latest interface definitions).

4.2.1 COM Server
Interface of COM_SERVER:

(from Class DB_APPLICATION:)

make

(from Class PROXY_DEMOGRAPHIC_MANAGER:)

demographic_manager: DEMOGRAPHIC_MANAGER

(from Class SHARED_KERNEL_SESSION:)

initialise_kernel_session (an_ehr_source_id: STRING)

kernel_session: KERNEL_SESSION

set_hcf (an_hcf: STRING)

(from Class ERROR_STATUS:)

fail_reason: STRING -- Error features to be replaced by shared ERROR objects

last_op_fail: BOOLEAN

(from Class GEHR_APPLICATION:)

kernel: KERNEL -- Not sure if this is needed in COM

(from Class COM_SERVER:)

main

4.2.2 KERNEL_SESSION
Class KERNEL_SESSION:

active_user: INTEGER

active_user_id: STRING

add_user (a_user_id: STRING; a_user_name: STRING; an_access_level: INTEGER; a_security_token: STRING; a_pin: INTE-

GER)

ehr_context: EHR_FACTORY -- Start from here to create/retrieve EHRs

ehr_source_id: STRING

has_user (a_pin: INTEGER): BOOLEAN

has_user_id (a_user_id: STRING): BOOLEAN
Author: Thomas Beale Page 23 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

The Ocean GEHR API OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
hcf: STRING

lowest_access_level: INTEGER

lowest_access_user: INTEGER

maximum_access_level: INTEGER

remove_user (a_pin: INTEGER)

set_active_user (a_pin: INTEGER)

set_hcf (an_hcf: STRING)

user (a_pin: INTEGER): KERNEL_SESSION_USER

valid_login (a_user_id: STRING; an_access_level: INTEGER; a_security_token: STRING): BOOLEAN

4.2.3 DEMOGRAPHIC_MANAGER
Class DEMOGRAPHIC_MANAGER:

has_party (key: STRING): BOOLEAN

is_valid: BOOLEAN

make

party (key: STRING): PARTY -- probably not needed in COM

party_ids: ARRAYED_LIST [STRING]

put_party (an_id: STRING)

4.2.4 EHR_FACTORY
Class EHR_FACTORY:

commit_ehr

create_ehr (patient_id: STRING; hca_auth: STRING)

create_ehr_commit_reason: STRING

ehr: EHR

ehr_exists (patient_id: STRING): BOOLEAN

ehr_ids: STRING

rep: REP_CLIENT

retrieve_ehr (patient_id: STRING)

4.2.5 TRANSACTION_FACTORY
Class TRANSACTION_FACTORY:

commit_transaction

commit_version (a_parent_version_id: STRING; hca_auth: STRING; a_reason: STRING; content: EHR_CONTENT)

create_versioned_transaction

ehr_id: STRING

rep: REP_CLIENT

set_ehr_id (an_ehr_id: STRING)

set_versioned_transaction (vt_id: STRING)

valid_demographic_id (an_id: STRING): BOOLEAN

versioned_transaction: VERSIONED_TRANSACTION

4.2.6 deferred ARCHETYPED_FACTORY
Class ARCHETYPED_FACTORY:

archetype_exists: BOOLEAN

archetype_id: STRING

create_default
Date of Issue:14/Jan/03 Page 24 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel The Ocean GEHR API
Application Programmer’s Interface Rev 2.1 Draft A
create_item (a_concept: PLAIN_TEXT)

item: [like item_anchor]: ORGANISER_ROOT

modify_item (an_item: [like item_anchor]: ORGANISER_ROOT)

retrieve_archetype (a_concept: PLAIN_TEXT)

select_sub_archetype (an_archetype_id: STRING; a_sub_archetype_key: STRING)

selected_sub_archetypes: HASH_TABLE [ARRAYED_LIST [STRING], STRING]

sub_archetype_factories: HASH_TABLE [ARRAYED_LIST [ARCHETYPED_FACTORY], STRING]

sub_archetype_id_patterns: HASH_TABLE [STRING, STRING]

sub_archetype_ids: STRING

valid_archetype_concept (a_concept: PLAIN_TEXT): BOOLEAN

valid_archetype_id (an_id: STRING): BOOLEAN

valid_sub_archetype_id (an_archetype_id: STRING; a_sub_archetype_key: STRING): BOOLEAN

4.2.7 ORGANISER_FACTORY
Class ORGANISER_FACTORY:

(inherit Class ARCHETYPED_FACTORY:)

context_valid: BOOLEAN

handles_set: BOOLEAN

install_sub_archetypes

organiser: ORGANISER_ROOT

valid_archetype (an_archetype: ARCHETYPE; a_sub_archetype_key: STRING): BOOLEAN

4.2.8 ORGANISER
Class ORGANISER:

add_content_item (a_content_item: DEFINITION_CONTENT)

add_organiser (an_organiser: ORGANISER)

all_items: LINKED_LIST [DEFINITION_CONTENT]

arch_add_content_item_valid (a_content_item: DEFINITION_CONTENT): BOOLEAN

arch_add_organiser_valid (an_organiser: ORGANISER): BOOLEAN

arch_remove_content_item_valid (a_content_item: DEFINITION_CONTENT): BOOLEAN

arch_remove_organiser_valid (an_organiser: ORGANISER): BOOLEAN

arch_set_name_valid (a_name: PLAIN_TEXT): BOOLEAN

content: LINKED_LIST [DEFINITION_CONTENT]

content_with_name (a_name: STRING): DEFINITION_CONTENT

data_value_at_path (a_path: STRING): DATA_VALUE

default_create

is_root: BOOLEAN

make (a_name: PLAIN_TEXT)

name: PLAIN_TEXT

organiser_at_path (a_path: STRING): ORGANISER

organiser_with_name (a_name: STRING): ORGANISER

organisers: LINKED_LIST [ORGANISER]

out: STRING

remove_content_item (a_content_item: DEFINITION_CONTENT)

remove_organiser (an_organiser: ORGANISER)

set_name (a_name: PLAIN_TEXT)
Author: Thomas Beale Page 25 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

The Ocean GEHR API OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
valid_content_path (a_path: STRING): BOOLEAN

valid_organiser_path (a_path: STRING): BOOLEAN

4.2.9 DEFINITION_CONTENT_FACTORY
Class DEFINITION_CONTENT_FACTORY:

(inherit Class ARCHETYPED_FACTORY:)

context_valid: BOOLEAN

handles_set: BOOLEAN

install_sub_archetypes

item_cursor: HIERARCHICAL_CURSOR

item_proposition: HIERARCHICAL_PROPOSITION

valid_archetype (an_archetype: ARCHETYPE; a_sub_archetype_key: STRING): BOOLEAN

4.2.10 DEFINITION_CONTENT
Class COMPOSED_OBJECT:

is_valid: BOOLEAN

(from Class ARCHETYPED:)

concept: PLAIN_TEXT

gehr_archetype_id: STRING

key: STRING

Class DEFINITION_CONTENT:

item_at_locator (a_locator: STRING): G1_ANY

links: HASH_TABLE [LOCATOR, TERM_TEXT]

locator_id: STRING

out: STRING

proposition: HIERARCHICAL_PROPOSITION

valid_locator (a_locator: STRING): BOOLEAN

4.2.11 DATA_FACTORY
Class DATA_FACTORY:

create_date (date_str: STRING): DATE_IMPL

create_date_time (date_time_str: STRING): DATE_TIME_IMPL

create_date_time_duration (date_time_duration_str: STRING): DATE_TIME_DURATION_IMPL

create_dimensioned_quantity (a_value: REAL; a_property: STRING; a_units: STRING): QUANTITY

create_dimensioned_quantity_range (a_lower_value: REAL; an_upper_value: REAL; a_property: STRING; a_units: STRING):

QUANTITY_RANGE

create_dimensionless_quantity (a_value: REAL): QUANTITY

create_dimensionless_quantity_range (a_lower_value: REAL; an_upper_value: REAL): QUANTITY_RANGE

create_plain_text (s: STRING): PLAIN_TEXT

create_quantity_ratio (q1: QUANTITY; q2: QUANTITY): QUANTITY_RATIO

create_term_text (tokens: ARRAY [STRING]): TERM_TEXT

create_time (time_str: STRING): TIME_IMPL

4.2.12 deferred HIERARCHICAL_PROPOSITION
(from Class HIERARCHICAL_ITEM:)

path: LOCATOR_PATH
Date of Issue:14/Jan/03 Page 26 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel The Ocean GEHR API
Application Programmer’s Interface Rev 2.1 Draft A
Class HIERARCHICAL_PROPOSITION:

as_string: STRING

context: ANY_CONTEXT

name: PLAIN_TEXT

valid_value_path (path_str: STRING): BOOLEAN

4.2.13 SIMPLE_PROPOSITION
(inherit Class HIERARCHICAL_PROPOSITION:)

Class SIMPLE_PROPOSITION:

as_string: STRING

cursor: HIERARCHICAL_CURSOR

data_value_valid (a_value: DATA_VALUE): BOOLEAN

form: INTEGER

replace (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT)

replace_data_value (a_value: DATA_VALUE)

value_valid (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT): BOOLEAN

4.2.14 TREE_PROPOSITION
(inherit Class HIERARCHICAL_PROPOSITION:)

Class TREE_PROPOSITION:

cursor: TREE_CURSOR

remove_i_th_branch (i: INTEGER) -- probably shouldn’t be visible

remove_i_th_value (i: INTEGER) -- probably shouldn’t be visible

tree_consistent: BOOLEAN

value_count: INTEGER

4.2.15 LIST_PROPOSITION
(inherit Class HIERARCHICAL_PROPOSITION:)

Class LIST_PROPOSITION:

cursor: VALUE_CURSOR

form: INTEGER

4.2.16 TABLE_PROPOSITION
(inherit Class HIERARCHICAL_PROPOSITION:)

Class TABLE_PROPOSITION:

add_row (new_row: PLAIN_TEXT)

append_row (a_row: ARRAY [DATA_VALUE])

as_string: STRING

cell (row: INTEGER; column: INTEGER): DATA_VALUE

column_count: INTEGER

column_name_index (a_name: STRING): INTEGER

column_path_specifier: STRING

cursor: GROUP_CURSOR

data_value_valid (a_value: DATA_VALUE; a_col: INTEGER; a_row: INTEGER): BOOLEAN

default_row: ARRAY [DATA_VALUE]

form: INTEGER

i_th_column (i: INTEGER): ARRAY [DATA_VALUE]
Author: Thomas Beale Page 27 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

The Ocean GEHR API OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
i_th_row (i: INTEGER): ARRAY [DATA_VALUE]

insert_row (before_row: INTEGER; a_row: ARRAY [DATA_VALUE])

remove_column (i: INTEGER)

remove_row (i: INTEGER)

replace (a_value: DATA_VALUE; a_context: ANY_CONTEXT; a_col: INTEGER; a_row: INTEGER)

replace_row (new_row: ARRAY [DATA_VALUE]; i: INTEGER)

replace_value (a_value: DATA_VALUE; a_col: INTEGER; a_row: INTEGER)

row_count: INTEGER

row_cursor: ROW_CURSOR

row_morphable: BOOLEAN

row_path (ix: INTEGER): LOCATOR_PATH

row_path_specifier: STRING

set_column_name (new_name: PLAIN_TEXT; col_nr: INTEGER)

table_consistent: BOOLEAN

valid_column (n: INTEGER): BOOLEAN

valid_row (n: INTEGER): BOOLEAN

valid_row_data (a_row: ARRAY [DATA_VALUE]): BOOLEAN

value_valid (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT; a_col: INTEGER; a_row: INTE-

GER): BOOLEAN

variable_table: BOOLEAN

4.2.17 deferred HIERARCHICAL_CURSOR
Class HIERARCHICAL_CURSOR:

exhausted: BOOLEAN

full: BOOLEAN

readable: BOOLEAN

writable: BOOLEAN

4.2.18 deferred HIERARCHICAL_LINEAR_CURSOR
Class HIERARCHICAL_LINEAR_CURSOR:

empty: BOOLEAN

remove_left

remove_right

valid_key (v: ANY): BOOLEAN

4.2.19 deferred HIERARCHICAL_GROUP_CURSOR
Class LINKED_LIST_CURSOR [G]:

after: BOOLEAN

before: BOOLEAN

(inherit Class HIERARCHICAL_CURSOR:)

(inherit Class HIERARCHICAL_LINEAR_CURSOR:)

Class HIERARCHICAL_GROUP_CURSOR [G -> HIERARCHICAL_ITEM]:
infix@ (i: INTEGER): [like item]: HIERARCHICAL_VALUE

back

count: INTEGER

extendible: BOOLEAN
Date of Issue:14/Jan/03 Page 28 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel The Ocean GEHR API
Application Programmer’s Interface Rev 2.1 Draft A
finish

first: [like item]: HIERARCHICAL_VALUE

forth

go_i_th (i: INTEGER)

go_to_name (a_name: STRING)

has (v: [like item]: HIERARCHICAL_VALUE): BOOLEAN

has_item_with_name (a_name: STRING): BOOLEAN

i_th (i: INTEGER): [like item]: HIERARCHICAL_VALUE

index: INTEGER

index_of (v: [like item]: HIERARCHICAL_VALUE; i: INTEGER): INTEGER

is_at_first: BOOLEAN

is_at_last: BOOLEAN

item_context: ANY_CONTEXT

item_name: PLAIN_TEXT

item_with_name (a_name: STRING): [like item]: HIERARCHICAL_VALUE

last: [like item]: HIERARCHICAL_VALUE

move (i: INTEGER)

name: PLAIN_TEXT

occurrences (v: HIERARCHICAL_VALUE): INTEGER

off: BOOLEAN

path: LOCATOR_PATH

prunable: BOOLEAN

start

target: HIERARCHICAL_GROUP

valid_index (i: INTEGER): BOOLEAN

4.2.20 TREE_CURSOR
(inherit Class HIERARCHICAL_CURSOR:)

Class TREE_CURSOR:

after: BOOLEAN

before: BOOLEAN

detach_item

down (i: INTEGER)

empty: BOOLEAN

extendible: BOOLEAN

group_at_path (path_str: STRING): [like item]: HIERARCHICAL_GROUP

group_cursor: GROUP_CURSOR

group_item_detachable: BOOLEAN

is_at_first: BOOLEAN

item_set: BOOLEAN

make (t: [like target]: TREE_PROPOSITION)

name: PLAIN_TEXT

off: BOOLEAN

path: LOCATOR_PATH

prunable: BOOLEAN

remove_i_th (i: INTEGER)
Author: Thomas Beale Page 29 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

The Ocean GEHR API OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
set_to_path (path_str: STRING)

start

up

valid_group_path (path_str: STRING): BOOLEAN

valid_index (i: INTEGER): BOOLEAN

valid_path (path_str: STRING): BOOLEAN

value_cursor: VALUE_CURSOR

4.2.21 VALUE_CURSOR
Class VALUE_CURSOR:

(inherit Class HIERARCHICAL_GROUP_CURSOR [HIERARCHICAL_VALUE]:)

add_end (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT)

add_front (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT)

add_left (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT)

add_right (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT)

data_value_valid (a_value: DATA_VALUE): BOOLEAN

make (the_target: HIERARCHICAL_GROUP)

new_value_valid (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT): BOOLEAN

replace (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT)

replace_data_value (a_value: DATA_VALUE)

value_valid (a_name: PLAIN_TEXT; a_value: DATA_VALUE; a_context: ANY_CONTEXT): BOOLEAN

values_extendible: BOOLEAN

4.2.22 GROUP_CURSOR
Class GROUP_CURSOR:

(inherit Class HIERARCHICAL_GROUP_CURSOR [HIERARCHICAL_GROUP]:)

add_end (a_name: PLAIN_TEXT; a_context: ANY_CONTEXT)

add_front (a_name: PLAIN_TEXT; a_context: ANY_CONTEXT)

add_left (a_name: PLAIN_TEXT; a_context: ANY_CONTEXT)

add_right (a_name: PLAIN_TEXT; a_context: ANY_CONTEXT)

group_valid (a_name: PLAIN_TEXT; a_context: ANY_CONTEXT): BOOLEAN

groups_extendible: BOOLEAN

make (the_target: HIERARCHICAL_GROUP)

new_group_valid (a_name: PLAIN_TEXT; a_context: ANY_CONTEXT): BOOLEAN

replace (a_name: PLAIN_TEXT; a_context: ANY_CONTEXT)

set_name (a_name: PLAIN_TEXT)

4.2.23 ROW_CURSOR
(inherit Class HIERARCHICAL_CURSOR:)

(inherit Class HIERARCHICAL_LINEAR_CURSOR:)

Class ROW_CURSOR:

infix@ (i: INTEGER): [like item]: ARRAY [DATA_VALUE]

after: BOOLEAN

append (s: [like item]: ARRAY [DATA_VALUE])

back

before: BOOLEAN
Date of Issue:14/Jan/03 Page 30 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel The Ocean GEHR API
Application Programmer’s Interface Rev 2.1 Draft A
column_count: INTEGER

count: INTEGER

extend (v: [like item]: ARRAY [DATA_VALUE])

extendible: BOOLEAN

fill (other: [like item]: ARRAY [DATA_VALUE])

finish

first: [like item]: ARRAY [DATA_VALUE]

forth

go_i_th (i: INTEGER)

go_to_name (a_name: STRING)

has (key: [like item]: ARRAY [DATA_VALUE]): BOOLEAN

has_item_with_name (a_name: STRING): BOOLEAN

i_th (i: INTEGER): [like item]: ARRAY [DATA_VALUE]

i_th_name (i: INTEGER): PLAIN_TEXT

index: INTEGER

index_of (key: [like item]: ARRAY [DATA_VALUE]; occurrence: INTEGER): INTEGER

is_at_first: BOOLEAN

is_at_last: BOOLEAN

item: ARRAY [DATA_VALUE]

item_with_name (a_name: STRING): [like item]: ARRAY [DATA_VALUE]

last: [like item]: ARRAY [DATA_VALUE]

move (i: INTEGER)

name: PLAIN_TEXT

occurrences (key: [like item]: ARRAY [DATA_VALUE]): INTEGER

off: BOOLEAN

path: LOCATOR_PATH

prunable: BOOLEAN

prune (key: [like item]: ARRAY [DATA_VALUE])

prune_all (key: [like item]: ARRAY [DATA_VALUE])

put (v: [like item]: ARRAY [DATA_VALUE])

put_front (v: [like item]: ARRAY [DATA_VALUE])

put_i_th (v: [like item]: ARRAY [DATA_VALUE]; i: INTEGER)

put_left (v: [like item]: ARRAY [DATA_VALUE])

put_right (v: [like item]: ARRAY [DATA_VALUE])

remove

remove_i_th (i: INTEGER)

replace (v: [like item]: ARRAY [DATA_VALUE])

search (key: [like item]: ARRAY [DATA_VALUE])

start

valid_index (i: INTEGER): BOOLEAN

valid_key (key: [like item]: ARRAY [DATA_VALUE]): BOOLEAN
Author: Thomas Beale Page 31 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

The Ocean GEHR API OCEAN GEHR-compliant Kernel
Rev 2.1 Draft A Application Programmer’s Interface
Date of Issue:14/Jan/03 Page 32 of 33 Author: Thomas Beale

Copyright © 1999, 2000 Open EHR Foundation

OCEAN GEHR-compliant Kernel
Application Programmer’s Interface Rev 2.1 Draft A

Authors: Thomas Beale Page 33 of 33 Date of Issue:14/Jan/03

Copyright © 1999, 2000 Open EHR Foundation
email: info@gehr.org

END OF DOCUMENT

	1 Introduction
	1.1 Status
	1.2 Overview
	1.2.1 Types of API

	2 Working Example
	3 API Design
	3.1 Native API Requirements
	3.1.1 Inheritance
	3.1.2 Genericity
	3.1.3 Assertions
	3.1.4 Exceptions
	3.1.5 Example

	3.2 Component API Requirements
	3.2.1 Data Types
	3.2.2 References
	3.2.3 Example

	3.3 Application Requirements

	4 The Ocean GEHR API
	4.1 Native API
	4.1.1 Server & Session
	4.1.2 Database (3 classes, 40 features)
	4.1.3 Demographics (5 classes, 50 features)
	4.1.4 EHRs (2 classes, 20 features)
	4.1.5 Transactions (2 classes, ~25 features)
	4.1.6 Organisers (2 classes, 20 features)
	4.1.7 Content (12 classes, ~200 features)
	Content Factories (4 classes, ~36 features)
	Content (4 classes, ~40 features)
	Propositions (4 classes, ~120 features)
	Examples

	4.2 COM API
	4.2.1 COM Server
	4.2.2 KERNEL_SESSION
	4.2.3 DEMOGRAPHIC_MANAGER
	4.2.4 EHR_FACTORY
	4.2.5 TRANSACTION_FACTORY
	4.2.6 deferred ARCHETYPED_FACTORY
	4.2.7 ORGANISER_FACTORY
	4.2.8 ORGANISER
	4.2.9 DEFINITION_CONTENT_FACTORY
	4.2.10 DEFINITION_CONTENT
	4.2.11 DATA_FACTORY
	4.2.12 deferred HIERARCHICAL_PROPOSITION
	4.2.13 SIMPLE_PROPOSITION
	4.2.14 TREE_PROPOSITION
	4.2.15 LIST_PROPOSITION
	4.2.16 TABLE_PROPOSITION
	4.2.17 deferred HIERARCHICAL_CURSOR
	4.2.18 deferred HIERARCHICAL_LINEAR_CURSOR
	4.2.19 deferred HIERARCHICAL_GROUP_CURSOR
	4.2.20 TREE_CURSOR
	4.2.21 VALUE_CURSOR
	4.2.22 GROUP_CURSOR
	4.2.23 ROW_CURSOR

